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Outline

• Dijet Mass Distribution and QCD

• Dijet Mass Distribution and Fit

• Trigger Efficiency

• Limits on Dijet Resonances

✓ Statistical  Error Only

• Conclusion

2



Sertac Ozturk,  Exotica Multijet Meeting

Event Selection
• Dataset

      (135059-135735) /MinimumBias/Commissioning10-SD_JetMETTau-
Jun14thSkim_v1/RECO
     (136066-137028) /JetMETTau/Run2010A-Jun14thReReco_v2/RECO
     (137437-139558) /JetMETTau/Run2010A-PromptReco-v4/RECO
     (139779-140159) /JetMETTau/Run2010A-Jul16thReReco-v1/RECO
     (140160-141961) /JetMETTau/Run2010A-PromptReco-v4/RECO
     (141962-142558) /JetMET/Run2010A-PromptReco-v4/RECO

✓ Jason files daily with DCS

✓ Scraping event removal

✓ Estimated Luminosity: 0.83 pb-1

• Event Selection

✓ HLT_Jet50U & Trigger bits: “0” 

✓ AK7caloJets 

✓ JEC: L2+L3, "Summer10" + Residual from data (to be applied for only data)

✓ |PVz| < 15 cm && PVndof >= 4

✓ Both |Jet η|< 2.5 and |Δη|<1.3

✓ Both leading jets passing the "loose" jet id & Mjj > 220 GeV (corrected)

• Total:  118601 Dijet Events 
3
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Dijet Mass and QCD
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• The data is in good agreement with full CMS simulation of 
QCD from PYTHIA.
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Trigger and JetID Efficiencies

• HLT_Jet50 trigger is full efficient 

✓ at Mjj=220 GeV for |η|<2.5 and |Δη|<1.3
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Basic Quality Plots
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Dijet Mass and Fit
• We fit the data a function containing 4 parameters.

• We get a good fit.

7
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2.8 Dijet Mass Spectrum and Fit 27

The parameterizations are listed in equation 3.371

dσ

dm
=

P0 · (1−m/
√

s )P1

mP2
, (Default Fit with 3-parameters)

=
P0

(P1 + m)P2
, (Alternate Fit A with 3-parameters)

=
P0 ·

�
1−m/

√
s + P3 · (m/

√
s)2

�P1

mP2
(Alternate Fit B with 4-parameters).

=
P0 · (1−m

√
s)p1

(m/
√

s)p2+p3ln(m
√

s)
(Alternate Fit C with 4-parameters).

(3)

The default three parameter fit is motivated by QCD. It includes a power law fall off with mass372

in the denominator, motivated by the QCD matrix element. It also has a term in the numerator373

motivated by the parton distribution fall off with fractional momentum (1− m/
√

s)P1 (where374 √
s = 7000 GeV is the center-of-mass energy). This three parameter function was used by CDF375

in run IA. We find that the default fit gives a good χ2/DF of 17.1/18 (probability 52%), and this376

is the best fit we can find of our data.377

We have also explored three alternate parameterizations. All parameterizations have a power378

law in them, because without a power law we cannot get a good fit with only 2, 3 or 4 pa-379

rameters. A 2-parameter fit with just a power law and a constant, p0/mp1 , gives a reasonable380

fit χ2/DF = 19.3/19 (probabilty 44%), but we have been advised to only consider parame-381

terizations with the same number of parameters as our default fit or greater, in order to have382

reasonable flexibility in the fit parameterization. The 2-parameter fit has only one shape pa-383

rameter. Alternate fit A is a 3-parameter fit with a modified power law, obtained by simply384

adding an offset to the mass, and we get a good fit with χ2/DF = 17.9/18 (probability 46%).385

Alternate fit B is a 4-parameter fit very much like our default fit, but we have added a term386

quadratic in m/
√

s to the term in the numberator to give the fit a little more flexibility to de-387

scribe data at high mass tails. This 4 parameter function was used by CDF in run IB [16]. We388

find that this function gives a good fit to our data, with χ2/DF of 16.8/17 (probability 47%).389

Alternate fit C is another 4 parameter function which again has our characteristic numerator390

and denominator but includes another term in the power of the power law, again just to give391

the fit more flexibiliity. This 4 parameter function was used by CDF in run II [14]. Again we392

find this function ives a good fit to our data, with χ2/DF of 16.8/17 (probability 47%).393

Figure 18 shows the fractional differences between data and the fit function, (data-fit)/fit, and394

the pulls, (data-fit)/error, for all four fits.395

Notice from both Fig. 17 and 18 that the largest difference from the default 3-parameter fit396

occurs when using the alternate fit A with 3 parameters. We will use this alternate 3-parameter397

function from fit A to find our systematic uncertainty on the background due to the fit parame-398

terization. Notice that there is very little difference between the default 3-parameter fit and the399

alternate 4-parameter fits which were introduced to give the 3-parameter fit more flexibility.400

From this we conclude that no more flexibility is needed to fit this data, and we have found the401

best possible smooth fit with a few parameters. When using these parameterizations to find402

systematic uncertainties on the background we do not find as large a systematic as with the403

alternate 3-parameter function.404
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Another Fit Parametrization

8
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alternate 4-parameter fits which were introduced to give the 3-parameter fit more flexibility.400

From this we conclude that no more flexibility is needed to fit this data, and we have found the401

best possible smooth fit with a few parameters. When using these parameterizations to find402

systematic uncertainties on the background we do not find as large a systematic as with the403

alternate 3-parameter function.404
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The parameterizations are listed in equation 3.371
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=

P0 · (1−m/
√
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mP2
, (Default Fit with 3-parameters)
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P0
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�
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√
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√
s)2

�P1

mP2
(Alternate Fit B with 4-parameters).
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√
s)p1

(m/
√
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√
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(Alternate Fit C with 4-parameters).

(3)

The default three parameter fit is motivated by QCD. It includes a power law fall off with mass372

in the denominator, motivated by the QCD matrix element. It also has a term in the numerator373

motivated by the parton distribution fall off with fractional momentum (1− m/
√

s)P1 (where374 √
s = 7000 GeV is the center-of-mass energy). This three parameter function was used by CDF375

in run IA. We find that the default fit gives a good χ2/DF of 17.1/18 (probability 52%), and this376

is the best fit we can find of our data.377
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√
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find this function ives a good fit to our data, with χ2/DF of 16.8/17 (probability 47%).393

Figure 18 shows the fractional differences between data and the fit function, (data-fit)/fit, and394

the pulls, (data-fit)/error, for all four fits.395

Notice from both Fig. 17 and 18 that the largest difference from the default 3-parameter fit396

occurs when using the alternate fit A with 3 parameters. We will use this alternate 3-parameter397

function from fit A to find our systematic uncertainty on the background due to the fit parame-398

terization. Notice that there is very little difference between the default 3-parameter fit and the399

alternate 4-parameter fits which were introduced to give the 3-parameter fit more flexibility.400

From this we conclude that no more flexibility is needed to fit this data, and we have found the401

best possible smooth fit with a few parameters. When using these parameterizations to find402

systematic uncertainties on the background we do not find as large a systematic as with the403

alternate 3-parameter function.404
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best result.
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Fit and Signal
• We search for resonance signal in our data.

• Excited quark signals are shown at 0.7 TeV and 1 TeV.

• String resonance signals are shown at 0.7 TeV and 1.6 TeV.
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The Largest Fluctuation in Data

• Best fit resonance at 
Mjj=780 GeV has 
significance 2.5 sigma 
from log likelihood 
ratio.
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Early Limits with Stat. Error Only

11

• We use a flat prior to get the posterior probability density and find limit. 

• We use a binned likelihood by the Bayesian approach to find limit on new particle cross section.

• 95% CL Upper limit with Stat. Error. Only compared to cross section for various model.

✓ Show quark-quark and quark-gluon and gluon-gluon resonances separately. 

✓ gluon-gluon resonance has the lowest response and is the widest and gives worst limit. 
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Conclusion
• We have a dijet mass spectrum that extends to 1.7 

TeV with 830 nb-1 data.

• The dijet mass data spectrum is in good agreement 
with a full CMS simulation of QCD from PYTHIA.

• The data is well fit by a simple parametrization with 
four parameters.

• We observed better mass limit than Tevatron for 
excited quark and String Resonance with Stat. Error 
Only.

• CMS is very close to set better mass limit for 
Axigluon/Coloron and E6 Diquark.
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